

Serie 11

Noise Figure, Power Gain and Noise Temperature of an Amplifier

- The temperature T is equal to 290 Kelvin.
- We do the assumption that the power gain of each amplifier is constant on the frequency bandwidth $B = 100$ kHz and equal to zero outside this bandwidth B .
- We do the assumption that the noise factor of each amplifier is constant on the frequency bandwidth $B = 100$ kHz.

Question A

We consider the amplifier 1 such that its power gain in the frequency bandwidth $B = 100$ kHz is equal to $G_1 = 30$ dB and its noise figure is equal to $NF_1 = 6.02$ dB.

We consider the amplifier 2 such that its power gain in the frequency bandwidth $B = 100$ kHz is equal to $G_2 = 10$ dB and its noise figure is equal to $NF_2 = 9.03$ dB.

Calculate the noise factor F of the circuit constituted by the cascade of the amplifier 1 and of the amplifier 2.

Question B

We consider the amplifier 3 such that its power gain in the frequency bandwidth $B = 100$ kHz is equal to $G_3 = 10$ dB and its noise figure is equal to $NF_3 = 6.02$ dB.

We consider the amplifier 4 such that its power gain in the frequency bandwidth $B = 100$ kHz is equal to $G_4 = 30$ dB and its noise figure is equal to $NF_4 = 9.03$ dB.

Calculate the noise factor F of the circuit constituted by the cascade of the amplifier 3 and of the amplifier 4.

Question C

Calculate the power gain G of the circuit constituted by the cascade of the amplifier 1 and of the amplifier 2.

Calculate the power gain G of the circuit constituted by the cascade of the amplifier 3 and of the amplifier 4.

Question D

Calculate the noise temperature T_r associated to the circuit constituted by the cascade of the amplifier 1 and of the amplifier 2.

Calculate the noise temperature T_r associated to the circuit constituted by the cascade of the amplifier 3 and of the amplifier 4.

Series 11:

Noise Figure, Power Gain and Noise Temperature of an Amplifier- Chap. 5

Winter semester 2020-2021

Prof. Catherine Dehollain

Page 1 sur 3

EPFL

HF&VHF Circuits and Techniques I

Question E

Calculate the Power Spectral Density of the basic noise generated by the circuit constituted by the cascade of the amplifier 1 and of the amplifier 2 by considering this noise at the input of the circuit (notation N_p on p. 5-3 or N_a on p. 5-6 of the HF&VHF course).

Calculate the Power Spectral Density of the basic noise generated by the circuit constituted by the cascade of the amplifier 3 and of the amplifier 4 by considering this noise at the input of the circuit (notation N_p on p. 5-3 or N_a on p. 5-6 of the HF&VHF course).

Question F

Calculate the average value of the noise factor F of the circuit constituted by the cascade of the amplifier 1 and of the amplifier 2 on the bandwidth $B = 100$ kHz.

Calculate the average value of the noise factor F of the circuit constituted by the cascade of the amplifier 3 and of the amplifier 4 on the bandwidth $B = 100$ kHz.

Question G

We do the assumption that the Signal over Noise Ratio at the input (SNR_i) is equal to 10.

Calculate the Signal over Noise Ratio at the output (SNR_{out}) of the circuit constituted by the cascade of the amplifier 1 and of the amplifier 2.

Calculate the Signal over Noise Ratio at the output (SNR_{out}) of the circuit constituted by the cascade of the amplifier 3 and of the amplifier 4.

Question H

We do the assumption that the Signal over Noise Ratio at the output (SNR_{out}) is equal to 1.

It is recalled that the bandwidth $B = 100$ kHz and that the temperature $T = 290$ Kelvin.

Calculate the minimum detectable signal (MDS) associated to the circuit constituted by the cascade of the amplifier 1 and of the amplifier 2.

Calculate the RMS value $V_{in\ RMS}$ of the input voltage; we do the assumption that the input impedance is equal to $R_{in} = 50$ Ohms.

Calculate the minimum detectable signal (MDS) associated to the circuit constituted by the cascade of the amplifier 3 and of the amplifier 4.

Calculate the RMS value $V_{in\ RMS}$ of the input voltage; we do the assumption that the input impedance is equal to $R_{in} = 50$ Ohms.

Question I

The circuit constituted by the cascade of the amplifier 1 and of the amplifier 2 is considered.

Calculate the output signal level L_{out} when the minimum detectable signal MDS is applied to the input of the circuit.

The circuit constituted by the cascade of the amplifier 3 and of the amplifier 4 is considered.

Series 11:

Noise Figure, Power Gain and Noise Temperature of an Amplifier- Chap. 5

Winter semester 2020-2021

Prof. Catherine Dehollain

Page 2 sur 3

EPFL
HF&VHF Circuits
and Techniques I

Calculate the output signal level L_{out} when the minimum detectable signal MDS is applied to the input of the circuit.

Series 11:

Noise Figure, Power Gain and Noise Temperature of an Amplifier- Chap. 5

Winter semester 2020-2021

Prof. Catherine Dehollain

Page 3 sur 3